PROPER POSTURE DURING THE TEST

Maintain a sitting position, with a straight back while leaning against the seat back and with a relaxed, slightly overextended neck.

1. Wear the noseclip.
2. Breathe in a relaxed way through the mouthpiece, keeping the tongue below, avoiding leaks.
3. Support behind the patient's cheeks and the soft tissue under chin during the test with the patient arms falling on the sides to obtain a relaxed shoulders posture, see figure below (suggested technique).

Alternatively, the patient may support his/her cheeks ensuring that the elbows are slightly detached from the chest.

SUGGESTED TESTING TECHNIQUE

ALTERNATIVE TECHNIQUE

TEST EVALUATION

1. **PRESENCE OF RESPIRATORY IMPAIRMENT AND REVERSIBILITY**

 Resistance (Rrs) graphs for Inspiratory, Expiratory and Total inspiratory cycle parameters at the lowest measured frequencies (for adult and pediatrics). Predicted dotted line and ULN (Upper Limit of Normality).

 Reactance (Xrs) graphs for Inspiratory, Expiratory and Total inspiratory cycle parameters at the lowest measured frequencies (for adult and pediatrics). Predicted dotted line and LLN (Lower Limit of Normality).

 RS > ULN and/or XRS < LLN are indicative of an anomaly in respiratory mechanics.

 Differences between tests that are above those expected in a reference healthy population are highlighted in red.

2. **LOCALIZATION**

 NORMAL

 Both Resistance (Rrs) and Reactance (Xrs) do not present anomalies (Rrs < ULN and Xrs > ULN).

 CENTRAL OBSTRUCTION

 Resistance (Rrs) is above its upper limit of normality (Rrs > ULN) and Reactance (Xrs) does not present anomalies (Xrs < LLN) for diseases affecting central airways.

3. **TIDAL EXPIRATORY FLOW LIMITATION, ΔXRS INDEX**

 PRE

 DB-POST

 TIDAL EFL

 ΔXrs = the patented index of expiratory flow limitation during tidal breathing.*

 ΔXrs > 2.8 → LIMITATION

WHAT IS THE RESMON PRO FULL?

It is a device based on the Forced Oscillation Technique (FOT), offering a complete functional assessment of the respiratory system, through simple measurements performed at tidal breathing.

SUGGESTED TESTING TECHNIQUE

ALTERNATIVE TECHNIQUE

IMPORTANT NOTE

Validity of results depends on good data quality and correct testing procedure, patient headrest, relaxed shoulders position, and supported cheeks. The Resmon Pro’s sophisticated software breath-reject algorithms will minimize artifacts such as glottis closure, coughs, and irregular breathing.

TEST EVALUATION

1. **PRESENCE OF RESPIRATORY IMPAIRMENT AND REVERSIBILITY**

 Resistance (Rrs) graphs for Inspiratory, Expiratory and Total inspiratory cycle parameters at the lowest measured frequencies (for adult and pediatrics). Predicted dotted line and ULN (Upper Limit of Normality).

 Reactance (Xrs) graphs for Inspiratory, Expiratory and Total inspiratory cycle parameters at the lowest measured frequencies (for adult and pediatrics). Predicted dotted line and LLN (Lower Limit of Normality).

 RS > ULN and/or XRS < LLN are indicative of an anomaly in respiratory mechanics.

 Differences between tests that are above those expected in a reference healthy population are highlighted in red.

2. **LOCALIZATION**

 NORMAL

 Both Resistance (Rrs) and Reactance (Xrs) do not present anomalies (Rrs < ULN and Xrs > ULN).

 CENTRAL OBSTRUCTION

 Resistance (Rrs) is above its upper limit of normality (Rrs > ULN) and Reactance (Xrs) does not present anomalies (Xrs < LLN) for diseases affecting central airways.

3. **TIDAL EXPIRATORY FLOW LIMITATION, ΔXRS INDEX**

 PRE

 DB-POST

 TIDAL EFL

 ΔXrs = the patented index of expiratory flow limitation during tidal breathing.*

 ΔXrs > 2.8 → LIMITATION